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Abstract
A general way to construct ladder models with certain Lie algebraic or
quantum Lie algebraic symmetries is presented. These symmetric models
give rise to a series of integrable systems. It is shown that corresponding
to these SU(2) symmetric integrable ladder models there are exactly
solvable stationary discrete-time (resp. continuous-time) Markov processes
with transition matrices (resp. intensity matrices) having spectra which coincide
with the ones of the corresponding integrable models.

PACS numbers: 02.50.-r, 64.60.Cn, 05.20.-y

Integrable models have played significant roles in statistical and condensed matter physics.
Some of them have been obtained and investigated using an algebraic or coordinate
‘Bethe ansatz method’ [1, 2]. The intrinsic symmetry of these integrable chain models
plays an essential role in finding complete sets of eigenstates of the systems. On the
other hand, stochastic models like stochastic reaction–diffusion models, models describing
coagulation/decoagulation, birth/death processes, pair-creation/pair-annihilation of molecules
on a chain, have attracted considerable interest due to their importance in many physical,
chemical and biological processes [3]4. The theoretical description of stochastic reaction–
diffusion systems is given by the ‘master equation’ which describes the time evolution of the
probability distribution function [4, 5]. This equation has the form of a heat equation with
potential (i.e. a Schrödinger equation with ‘imaginary time’). If an integrable system with
an open boundary condition can be transformed into a stochastic reaction–diffusion system,
e.g. by a unitary transformation between their respective Hamiltonians, looked upon as self-
adjoint operators acting in the respective Hilbert spaces, then the stochastic model so obtained
is exactly solvable with the same energy spectrum as the one of the integrable system [4,6,7].

3 SFB 256; BiBoS; CERFIM(Locarno); Acc. Arch.; USI(Mendriso).
4 For a review and an extensive literature list concerning physical aspects of the models, see e.g. [3].

0305-4470/01/346545+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6545

http://stacks.iop.org/ja/34/6545


6546 S Albeverio and S-M Fei

In [8], we have presented a general procedure to construct open chain models having a
certain Lie algebra or quantum Lie algebra symmetry by using the coproduct properties of bi-
algebras. These models can be reduced to integrable ones via a detailed representation of the
symmetry algebras involved. In recent years spin ladders have attracted considerable attention,
due to the developing experimental results on ladder materials and the hope to get some insight
into the physics of metal-oxide superconductors [9]. In this Letter we study the construction
of ladder models with certain Lie algebra or quantum Lie algebra symmetry. We show that
the integrable quantum spin ladder model discussed in [10] can be obtained in this way and it
can be transformed into both stationary discrete-time (discrete reaction–diffusion models) and
stationary continuous-time Markov processes with transition matrices resp. intensity matrices
having the same spectra as the ones of this SU(2) invariant integrable ladder model.

Let A be an associative Lie bi-algebra with basis e = {eα}, α = 1, 2, . . . , n, satisfying
the Lie commutation relations [eα, eβ] = C

γ

αβeγ , where C
γ

αβ are the structure constants with
respect to the base e. Let � (resp. C(e)) be the coproduct operator (resp. Casimir operator)
of the algebra A. The coproduct operator action on the Lie algebra elements is given by
�eα = eα ⊗ 1 + 1 ⊗ eα , 1 stands for the identity operator. It can be immediately checked that
[�eα,�eβ] = C

γ

αβ�eγ and [�C(e),�eα] = 0, α = 1, 2, . . . , n.
Let us consider a two-leg ladder with L rungs. To each point at the ith rung,

i = 1, . . . , L, and θ th leg, θ = 1, 2, of the ladder we associate a (finite-dimensional
complex) Hilbert space Hθ

i . We can then associate to the whole ladder the tensor product
H 1

1 ⊗H 2
1 ⊗H 1

2 ⊗H 2
2 ⊗· · ·⊗H 1

L ⊗H 2
L. The generators of the algebra A acting on this Hilbert

space associated with the above ladder are given by Eα = �2L−1eα , α = 1, 2, . . . , n, where
we have defined

�m = (1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
m times

⊗�) . . . (1 ⊗ 1 ⊗ �)(1 ⊗ �)� ∀m ∈ N. (1)

Eα also generates the Lie algebra A: [Eα,Eβ] = C
γ

αβEγ .
Let

h =
3∑

i=1

2∑
j=1

aij�
2
i �

1
j�C(e) (2)

where�1
1 = (�⊗1), �1

2 = (1⊗�), �2
1 = (�⊗1⊗1), �2

2 = (1⊗�⊗1), �2
3 = (1⊗1⊗�),

aij ∈ C such that h is Hermitian. Let F denote a real entire function defined on the 2Lth tensor
space A ⊗ A ⊗ · · · ⊗ A of the algebra A. We call

H =
L−1∑
i=1

F(h)i,i+1 (3)

the (quantum mechanics) Hamiltonian associated with the ladder. Here F(h)i,i+1 means that
the four-fold tensor element F(h) is associated with the i and (i + 1)th rungs of the ladder and
acts on the space H 1

i ⊗ H 2
i ⊗ H 1

i+1 ⊗ H 2
i+1, i.e.

F(h)i,i+1 = 11
1 ⊗ 12

1 ⊗ · · · ⊗ 11
i−1 ⊗ 12

i−1 ⊗ F(h) ⊗ 11
i+2 ⊗ 12

i+2 ⊗ · · · ⊗ 11
L ⊗ 12

L. (4)

Theorem 1. The Hamiltonian H is a self-adjoint operator acting in H 1
1 ⊗H 2

1 ⊗H 1
2 ⊗H 2

2 ⊗
· · · ⊗ H 1

L ⊗ H 2
L and is invariant under the algebra A.

Proof. That H is self-adjoint is immediate from the definition. To prove the invariance of H
it suffices to prove [H,Eα] = 0, α = 1, 2, . . . , n.

From the formula for the above coproduct we have

Eα =
L∑
i=1

(eα)i (5)
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where (eα)i = 11
1 ⊗12

1 ⊗· · ·⊗11
i−1 ⊗12

i−1 ⊗ (eα ⊗12
i ⊗+11

i ⊗eα)⊗11
i+1 ⊗12

i+1 ⊗· · ·⊗11
L⊗12

L.
From [�C(e),�eα] = 0, α = 1, 2, . . . , n, it follows easily that [h,�2eα] = 0, where

�2eα = (1 ⊗ 1 ⊗ �)(1 ⊗ �)(�)eα , as defined in (1). Obviously [F(h)i,i+1, (eα)j ] = 0,
∀j 	= i, i + 1. Therefore we have, for all α = 1, 2, . . . , n:

[H,Eα] =
[ L−1∑

i=1

F(h)i,i+1,

L−1∑
j=1

(eα)j

]

=
L−1∑
i=1

[
F(h)i,i+1,

i−1∑
j=1

(eα)j +
L∑

k=i+2

(eα)k + (eα)i + (eα)i+1

]

=
L−1∑
i=1

[
F(h)i,i+1, (eα)i + (eα)i+1

]

=
L−1∑
i=1

[
F(h)i,i+1, (�

2eα)i,i+1
] = 0. (6)

�

Let V be a complex vector space and Ř be the solution of the quantum Yang–Baxter
equation (QYBE) [2, 11] without spectral parameters, see e.g. [12]. Then Ř takes values in
EndC(V ⊗ V ). The QYBE is

Ř12Ř23Ř12 = Ř23Ř12Ř23 (7)

where Ř12 = Ř ⊗ id, Ř23 = id ⊗ Ř and id is the identity operator on V .
In the following we say that a ladder model having a (quantum mechanical) Hamiltonian

of the form

H =
L−1∑
i=1

(H)i,i+1 (8)

is integrable in the sense that the operator H satisfies the QYBE relation (7), i.e.

(H)12(H)23(H)12 = (H)23(H)12(H)23 (9)

where (H)12 = H ⊗ id and (H)23 = id ⊗ H. H is a solution of the Yang–Baxter equation
without spectral parameters. Correspondingly the ith complex vector space Vi now stands
for H 1

i ⊗ H 2
i . After Baxterization the Hamiltonian system (8) satisfying relation (9) can in

principle be exactly solved by the algebraic Bethe ansatz method, see e.g. [1].
We consider ladder models with SU(2) symmetry. Let Si , i = 1, 2, 3, and C be

the generators of the algebra SU(2) and Casimir operator, respectively. The coproduct of
the algebra is given by �Si = 1 ⊗ Si + Si ⊗ 1, i = 1, 2, 3. Taking into account that
�

j

i F(e) = F(�
j

i e), i = 1, 2, 3, j = 1, 2, ∀ e ∈ SU(2), the generic h is of the form
F(C1, C2, C3), where

C1 =
3∑

i=1

(Si ⊗ 1 ⊗ 1 ⊗ Si + 1 ⊗ Si ⊗ 1 ⊗ Si + 1 ⊗ 1 ⊗ Si ⊗ Si)

C2 =
3∑

i=1

(Si ⊗ 1 ⊗ 1 ⊗ Si + Si ⊗ Si ⊗ 1 ⊗ 1 + Si ⊗ 1 ⊗ Si ⊗ 1)

C3 =
3∑

i=1

(Si ⊗ 1 ⊗ 1 ⊗ Si + 1 ⊗ Si ⊗ 1 ⊗ Si + Si ⊗ 1 ⊗ Si ⊗ 1 + 1 ⊗ Si ⊗ Si ⊗ 1).
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In the spin- 1
2 representation of the algebra SU(2), the solutions of the QYBE (9) are

16 × 16 matrices. For instance, it is easy to check that

H0 = 108d − 55f

108
C111 +

−72d + 104f

288
C112 +

−486d + 211f

270
C113 +

−756d + 370f

216
C121

−29f

108
C122 +

90d − 31f

36
C123 +

2d − f

2
C131 +

−54d + 26f

108
C132

+
−108d + 43f

540
C133 +

−216d + 80f

864
C211 +

11f

108
C212 +

216d − 119f

108
C213

(10)

satisfies (9) for all d, f ∈ R, where Cijk ≡ Ci · Cj · Ck and i, j, k = 1, 2, 3.
The corresponding solution related to the SU(2)-symmetric integrable ladder model

in [10] can be expressed as

H = − 5
48C111 − 11

32C112 − 61
30C113 − 41

48 (C121 − C122) + 21
16C123

+ 3
4C131 − 17

12C132 + 173
240C133 + 55

96C211 − 5
3C212 + 131

48 C213. (11)

Through baxterization, H(x) = (x − 1)H + 16 I16×16 satisfies the QYBE with spectral
parameters: H12(x)H23(xy)H12(y) = H23(y)H12(xy)H23(x), where H12(·) = H(·) ⊗ I4×4,
H23(·) = I4×4 ⊗H(·), In×n denotes the n×n identity matrix. The model can be exactly solved
using a algebraic Bethe ansatz method. It describes a periodic spin ladder system with both
isotropic exchange interactions and biquadratic interactions:

H = 1
2

L−1∑
i=1

( 1
2 + 2S1,i · S1,i+1)(

1
2 + 2S2,i · S2,i+1) − 1

2

L−1∑
i=1

( 1
2 + 2S1,i · S2,i+1)(

1
2 + 2S2,i · S1,i+1)

+ 5
6

L−1∑
i=1

( 1
2 + 2S1,i · S2,i )(

1
2 + 2S1,i+1 · S2,i+1)

where Sθ,i = (σ x
θ,i , σ

y

θ,i , σ
z
θ,i)/2, σx, σ y, σ z are Pauli matrices. S1,i (resp. S2,i) is the spin

operator on the first (resp. second) leg of the ith rung of the ladder.
It is further shown that for a more general form of (11),

H′ = −45 + 23 a − 4 b − 28 c

432
C111 +

−99 − 3 a − 3 b − c

288
C112

+
−1098 − 91 a − 118 b − 16 c

540
C113 +

−369 − 97 a − 70 b + 50 c

432
C121

+
396 + 4 a + 31 b + 25 c

432
C122 +

189 + 29 a + 20 b − 4 c

144
C123 +

3

4
C131

+
−306 − 2 a − 29 b − 14 c

216
C132 +

1557 − 71 a + 172 b + 124 c

2160
C133

+
495 − a + 53 b + 47 c

864
C211 +

−720 − 22 a − 49 b − 43 c

432
C212

+
1179 + 91 a + 118 b + 16 c

432
C213 (12)

with a, b, c ∈ R, the corresponding ladder modelH ′ = ∑L−1
i=1 H′

i,i+1 can also be exactly solved
by a coordinate Bethe ansatz [10].

We now consider stochastic processes [13] on a ladder. Let (%, P ) be a probability space,
with % the finite sample space and P the probability measure defined on the σ -algebra of
all subsets of %. For a discrete time stationary Markov chain {Xi}, i ∈ N, with underlying
probability space (%, P ) and a finite state space S = {1, 2, 3, . . . , m}, there are m2 transition
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probabilities {pαβ}, α, β = 1, 2, . . . , m. The stochastic transition matrix P = (pαβ) has the
following properties:

pαβ � 0
m∑

α=1

pαβ = 1 α, β = 1, 2, . . . , m. (13)

For a stationary continuous-time real-valued stochastic process, {Xt }t∈R+ (on the
probability space (%, P )), the transition semigroup P(t) = P(Xt=j |X0 = i) is generated
by an intensity matrix Q = (qαβ) with the properties

qαβ � 0 α 	= β qαα = −
∑
α 	=β

qαβ α, β = 1, 2, . . . , m. (14)

The transition matrix P (resp. intensity matrix Q) defines the stochastic processes on a
ladder. In the following we call a ladder associated with the above stochastic processes, for
instance, particles jumping randomly on the ladder, characterized by the matrices P and Q

a Markov ladder, though geometrically it is equivalent to a chain with particular non-nearest
neighbour interactions. If the eigenvalues and eigenstates of P resp. Q are known, then exact
results concerning the stochastic processes, such as time-dependent averages and correlations,
can be obtained. We say that a Markov ladder is integrable (resp. SU(2)-symmetric) if the
eigenvalues and eigenstates of the related transition matrix P or intensity matrix Q can be
exactly solved (resp. is SU(2) invariant).

To every site on the ith rung and θ th leg of the ladder we associate states described by the
variable τ ji taking values 0 and 1 (conventionally a vacancy at the site is associated with the
state 0 and an occupied state is associated with the state 1). The state space of this algebraic
ladder is then finite and has a total of m = 22L states.

Theorem 2. The following matrix:

PSU(2) = 1

4(L − 1)(18 + 4a + 4b + c)

L−1∑
i=1

H′′
i,i+1 (15)

defines a stationary discrete-time SU(2)-symmetric integrable Markov ladder for a, b, c � 0,
a + 2b − 16 � 0. The operator H′′ is given by

H′′ =




a1 a2 a2 a2 a3 a4 a4 a4 a3 a4 a4 a4 a3 a4 a4 a4

a2 a5 a6 a6 a7 a3 a8 a8 a8 a9 a4 a4 a8 a9 a4 a4

a2 a6 a5 a6 a8 a4 a9 a4 a7 a8 a3 a8 a8 a4 a9 a4

a2 a6 a6 a5 a8 a4 a4 a9 a8 a4 a4 a9 a7 a8 a8 a3

a3 a7 a8 a8 a5 a2 a6 a6 a9 a8 a4 a4 a9 a8 a4 a4

a4 a3 a4 a4 a2 a1 a2 a2 a4 a3 a4 a4 a4 a3 a4 a4

a4 a8 a9 a4 a6 a2 a5 a6 a8 a7 a3 a8 a4 a8 a9 a4

a4 a8 a4 a9 a6 a2 a6 a5 a4 a8 a4 a9 a8 a7 a8 a3

a3 a8 a7 a8 a9 a4 a8 a4 a5 a6 a2 a6 a9 a4 a8 a4

a4 a9 a8 a4 a8 a3 a7 a8 a6 a5 a2 a6 a4 a9 a8 a4

a4 a4 a3 a4 a4 a4 a3 a4 a2 a2 a1 a2 a4 a4 a3 a4

a4 a4 a8 a9 a4 a4 a8 a9 a6 a6 a2 a5 a8 a8 a7 a3

a3 a8 a8 a7 a9 a4 a4 a8 a9 a4 a4 a8 a5 a6 a6 a2

a4 a9 a4 a8 a8 a3 a8 a7 a4 a9 a4 a8 a6 a5 a6 a2

a4 a4 a9 a8 a4 a4 a9 a8 a8 a8 a3 a7 a6 a6 a5 a2

a4 a4 a4 a3 a4 a4 a4 a3 a4 a4 a4 a3 a2 a2 a2 a1




(16)

where a1 = 66+a+4b+4c, a2 = −10+a+2b, a3 = 6+a+2b, a4 = 2+a, a5 = 54+a+4b+4c,
a6 = −16 + a + 2b, a7 = 14 + a, a8 = 8 + a, a9 = a + 2b. H′′

i,i+1 acts on the i and i + 1 rungs
as defined in (4).
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Proof. For the integrable ladder model with Hamiltonian H ′ = ∑L−1
i=1 H′

i,i+1, the system
remains integrable if one adds to H ′ a constant term and multiplies H ′ by a constant factor.
Moreover the spectrum of H ′ will not be changed if one changes the local basis of the rungs,
i.e. the following Hamiltonian H ′′, defined by

H ′′ = BH ′B−1 B = ⊗L
i=1Bi (17)

where Bi are 4 × 4 non-singular matrices, has the same eigenvalues as H ′.
It is straightforward to prove that H′′ = BH′B−1, where

B =




−1 1 0 0
1 1/2 −1/2 1
0 −1/2 −3/2 0
0 1 0 −1


 .

Therefore the Hamiltonian systems H ′ and H ′′ = ∑L−1
i=1 H′′

i,i+1 satisfy the relation (17) with
Bi = B, i = 1, 2, . . . , L. Hence H ′′ is also SU(2)-symmetric and integrable with the same
spectrum as H ′.

For a + 2b � 0, as the entries of H′′ are positive, H ′′
αβ � 0, α, β = 1, 2, . . . , 22L.

From (16) we also have
∑16

α=1 H′′
αβ = 4(18 + 4a + 4b + c), ∀β = 1, 2, . . . , 16. By the

definition (13) PSU(2) is the transition matrix of a stationary discrete-time SU(2)-symmetric
integrable Markov ladder. �

The state space of this Markov processes associated with the stochastic matrix PSU(2) is
S = (1, 2, . . . , 22L). Generally there is no closed subset C of the state space S such that
(PSU(2))ij = 0 for all i ∈ C and j 	∈ C. In a certain parameter region of the a, b, c there are
nonempty closed sets other than S itself and the Markov ladder becomes reducible. However,
there exists no absorbing state in this Markov ladder.

By using results in the proof of theorem 2, we have also the following integrable stationary
continuous-time Markov ladder:

Theorem 3. The matrix

QSU(2) = H ′′ − 4(L − 1)(18 + 4a + 4b + c) =
L−1∑
i=1

(H′′ − 4(18 + 4a + 4b + c))i,i+1 (18)

is the intensity matrix of a stationary continuous-time Markov ladder.

We have discussed the construction of integrable ladder models with Lie algebra symmetry.
It is shown that the stochastic processes correspond to the SU(2) symmetric integrable
ladder models define exactly solvable stationary discrete-time (resp. continuous-time) Markov
ladder with transition matrices (resp. intensity matrices) which coincide with those of the
corresponding integrable models.

Integrable ladder models with quantum algebraic symmetry and the related Markov
processes can be investigated in a similar way. Let e = {eα, fα, hα}, α = 1, 2, . . . , n, be
the Chevalley basis of a Lie algebra A with rank n. Let e′ = {e′

α, f
′
α, h

′
α}, α = 1, 2, . . . , n,

be the corresponding elements of the quantum (q-deformed) Lie algebra Aq . We denote by rα
the simple roots of the Lie algebra A. The Cartan matrix (aαβ) is then

aαβ = 1

dα
(rα · rβ) dα = 1

2 (rα · rα). (19)

The coproduct operator �′ of the quantum algebra Aq is given by

�′h′
α = h′

α ⊗ 1 + 1 ⊗ h′
α (20)

�′e′
α = e′

α ⊗ q−dαh
′
α + qdαh

′
α ⊗ e′

α (21)

�′f ′
α = f ′

α ⊗ q−dαh
′
α + qdαh

′
α ⊗ f ′

α (22)



Integrable stochastic ladder models 6551

q ∈ C, qdα 	= ±1, 0. In the following we use the notations �′m and �′ i
j defined similarly as

in (1) and (2).

Theorem 4. The ladder model defined by the following Hamiltonian acting in H 1
1 ⊗ H 2

1 ⊗
H 1

2 ⊗ H 2
2 ⊗ · · · ⊗ H 1

L ⊗ H 2
L is invariant under the quantum algebra Aq:

Hq =
L−1∑
i=1

F(hq)i,i+1 (23)

where hq = ∑3
i=1

∑2
j=1 aij�

′ 2
i �

′ 1
j �Cq(e

′), Cq(e
′) is the Casimir operator of Aq .

Proof. The generators of Aq on the ladder are given by

H ′
α = �′ 2L−1h′

α =
L∑
i=1

11
1 ⊗ 12

1 ⊗ · · · (h′
α ⊗ 12

i ⊗ +11
i ⊗ h′

α) ⊗ · · · ⊗ 11
L ⊗ 12

L

E′
α =

L∑
i=1

qdαh
′
α ⊗ · · · ⊗ (e′

α ⊗ 12
i ⊗ +11

i ⊗ e′
α) ⊗ · · · ⊗ q−dαh

′
α (24)

F ′
α =

L∑
i=1

qdαh
′
α ⊗ · · · ⊗ (f ′

α ⊗ 12
i ⊗ +11

i ⊗ f ′
α) ⊗ · · · ⊗ q−dαh

′
α .

From [�′
F(Cq(e

′)),�′a] = 0, ∀a ∈ Aq and �′q±dαh
′
α = q±dαh

′
α ⊗ q±dαh

′
α , we have

[hq,�′ 2h′
α] = [hq,�′ 2e′

α] = [hq,�′ 2f ′
α] = 0. Therefore

[Hq,E
′
α] =

L−1∑
i=1

[
F(hq)i,i+1, (e

′
α)

1
i ⊗ (q−dαh

′
α )2

i ⊗ (q−dαh
′
α )1

i+1 ⊗ (q−dαh
′
α )2

i+1

+(qdαh
′
α )1

i ⊗ (e′
α)

2
i ⊗ (q−dαh

′
α )1

i+1 ⊗ (q−dαh
′
α )2

i+1

+(qdαh
′
α )1

i ⊗ (qdαh
′
α )2

i ⊗ (e′
α)

1
i+1 ⊗ (q−dαh

′
α )2

i+1

+(qdαh
′
α )1

i ⊗ (qdαh
′
α )2

i ⊗ (qdαh
′
α )1

i+1 ⊗ (e′
α)

2
i+1

]
=

L−1∑
i=1

[
F(hq),�

′ 2(e′
α)

]
i,i+1 = 0.

[Hq, F
′
α] = 0 is obtained similarly. [Hq,H

′
α] = 0 can be proved like (6). Hence Hq commutes

with the generators of Aq for the ladder. �
The Hamiltonian system (23) is expressed by the quantum algebraic generators e′ =

(h′
α, e

′
α, f

′
α). Assume now that e → e′(e) is an algebraic map from A to Aq (we remark that

for rank one algebras, both classical and quantum algebraic maps can be discussed in terms of
the two-dimensional manifolds related to the algebras, see [14]). We then have

Hq =
L−1∑
i=1

F(hq(e
′(e))i,i+1. (25)

In this way we obtain ladder models having quantum algebraic symmetry but expressed in
terms of the usual Lie algebraic generators {eα} with manifest physical meaning.
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